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1. Introduction

A retailer can often achieve cost savings by locating its stores close together. A dense

networks of nearby stores facilities the logistics of deliveries and facilitates the sharing of

infrastructure such as distribution centers. When stores are close together, they are easier

to manage and it is easier to reshuffle employees between stores. Stores located near each

other can potentially save money on advertising. All such cost savings are economies of

density.2

Wal-Mart is the world’s largest corporation in terms of sales. It is regarded as a company

that excels in logistics. The goal of this paper is assess the importance of economies of

density to Wal-Mart. My results suggest the benefits are significant.

In choosing store locations, Wal-Mart faces a tradeoff. By concentrating stores in the

same area, it enjoys economies of density. Offsetting this gain, however, is diminishing

returns in store sales. As Wal-Mart adds more and more stores to a given area, the market

areas of the stores begin to overlap and new stores cannibalize sales from existing stores.

Because of these diminishing returns, if density economies were negligible, Wal-Mart would

not concentrate its stores in one state before moving on to a new state. It would tend

to scatter stores around the country, then go back later and fill in. In contrast, density

economies are significant, we would expect Wal-Mart to fill out one area before moving to

the next.

The latter is what happened. Wal-Mart started with its first store near Bentonville,

Arkansas, in 1962. The diffusion of store openings radiating out from this point was very

gradual. Wal-Mart did not scatter stores in desirable locations throughout the county

and then come back for the “high hanging fruit,” with fill-in stores. Locations far from

Bentonville had to wait to get their Wal-Marts. The process repeated itself in 1989 when

Wal-Mart introduced the “supercenter” format, which carries all of the regular merchandise

of a Wal-Mart plus groceries. The first supercenters started in the center near Bentonville

and again gradually radiated from the middle out.

It would be difficult to directly measure the economies of density that Wal-Mart enjoys.

2 There is a larger literature on economies of density in electricity markets (e.g. Roberts (1986)) and
transportation markets (e.g.... )
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Wal-Mart is notorious for being secretive–I am not going to get access to confidential data

on its logistics costs, managerial costs, advertising, or any of the other cost components that

depend upon economies of density.

But how store sales depend upon store locations is something that can I can estimate.

I use store-level sales estimates from ACNeilsen and demographic data from the Census to

estimate a model of demand for Wal-Mart at a rich level of geographic detail. Wal-Mart

And I combine this with additional information about cannibalization that Wal-Mart itself

releases in its annual reports.

Using my sales model, I determine that Wal-Mart has encountered significant diminishing

returns in sales as it has piled up many stores in the same area. New stores cannibalize

existing firms sales in the same area in a substantial way. From this I conclude that the

economies of density must be substantial.

I write down a structural model of Wal-Mart and attempt to quantity parameters relat-

ing to density economies. Given the enormous number of different possible combinations

of stores that can be opened, it is difficult to solve Wal-Mart’s optimization problem. This

makes conventional approaches used in the industrial organization literature infeasible. In-

stead, I use a perturbation approach. I consider a set of selected deviations from what

Wal-Mart actually did and determine the set of parameters consistent with this decision.

Using the procedure, I am able to determine a lower bound on the importance of density

economies.

The paper contributes to the literature on entry and store location in retail. Related

contributions include Bresnahan and Reiss (1991), Toivanen and Waterson (2005), Andrews

et al (2004).

In addition to contributing to the literature on economies of density, the paper also con-

tributes to a new and growing literature about Wal-Mart itself (e.g., Basker (forthcoming),

Stone (1995), Hausman and Leibtag (2005), Ghemawat, Mark, and Bradley (2004)), Neu-

mark et al (2005), Jia (2005). Wal-Mart has had a huge impact on the economy. It has been

argued that this one company contributed a non-negligible portion of the aggregate produc-

tivity growth in recent years. Wal-Mart is responsible for major changes in the structure

of industry, of production, and in of labor markets. One good question is: what exactly
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is a Wal-Mart, why is it different from a K-Mart or a Sears? One thing that distinguishes

Wal-Mart is its emphasis on logistics and distribution. (See, for example, Holmes (2001)).

It is plausible that Wal-Mart’s recognition of economies of density and its knowledge of how

to exploit these economies distinguished it from K-Mart and Sears and is part of the secret

of Wal-Mart’s success.

2. Model

Consider a model of a retailer that I will call “Wal-Mart.” At a particular point in time,

Wal-Mart has as set of stores and consumers make buying decisions based on the location

of the stores. I first describe consumer demand holding the set of Wal-Mart store locations

as fixed. Next I describe the cost structure and the process through which Wal-Mart opens

new stores.

2.1 Demand

We expect that consumers will tend to shop at the closest Wal-Mart to their home. Nonethe-

less, in some cases, a consumer might prefer a further Wal-Mart. For example, for a partic-

ular consumer, a further Wal-Mart might be more convenient for stopping on the way home

from work. Since a consumer at a given location might potentially shop at several different

Wal-Marts, we need a model of product differentiation across different Wal-Marts. To this

end, I follow the common practice in the literature of taking a discrete choice approach to

product differentiation. I specify a nested logit model and put the various Wal-Marts in a

consumer’s vicinity in one nest and put the outside good in a second nest.

There are two kinds of Wal-Mart stores. A regular Wal-Mart sells general merchandise

(e.g. clothes, hardware, toys, etc.) as well as some selected nonperishable food items (e.g.

soda). A supercenter sells a full line of groceries in addition to general merchandise. One

issue that has to be dealt with is how to model shopping decisions for these two classes of

products. My approach is to assume consumers make two distinct shopping decisions: (1)

where to shop for general merchandise and (2) where to shop for groceries. I recognize this

goes against the basic logic of a supercenter to get consumers into a store to conveniently

purchase both kinds of merchandise. As I discuss below, data limitations make it difficult
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for me to estimate this complementarity, so I zero it out. It would be nice to get this

complementarity right, but I don’t think it is a first-order issue for the question I am looking

at.

Now for some notation. There is a set of possible store locations B. At a particular

point in time, let Bwal ⊆ B be the subset of locations for which there is a Wal-Mart store. I

will refer to an element j ∈ Bwal as store j. Some subset Bsuper ⊆ Bwal also carry groceries,

the supercenters.

There are L discrete locations indexed by where consumers live. In general, the number

of locations will be large relative to the number of Wal-Marts open so each Wal-Mart will

tend to draw from many locations. For a given location , let n denote the population of

location and let m be the population density at . Let y j denote the distance in miles

between location and store location j. Define Bwal to be the set of Wal-Marts in the

vicinity of the consumer’s location, which I take to be those within 25 miles.

Bwal
l =

©
j, j ∈ Bwal and y j ≤ 25

ª
Consider a particular consumer k at a particular location . I first explain how spending

on general merchandise is allocated. The analysis of spending on groceries is similar. The

consumer has a budget λgen for spending on general merchandise. The consumer makes a

discrete choice between buying the outside good (good 0) or from one of the Wal-Marts in

Bwal (assuming Bwal is non-empty). The utility of the outside good 0 is

uk 0 = o(m ) + z ω + ζk0 + (1− σ)εk0. (1)

The first term is a function o(·) that depends upon the population densitym at consumer

i’s location. Assume o0(m) > 0; i.e., the outside option is better with more people around.

This is a sensible assumption as we would expect there to be more substitutes for a Wal-Mart

in larger markets for the usual reasons. A richer model of demand would explicitly specify

the alternative shopping options available to the consumer. In my empirical analysis this

isn’t feasible for me since I don’t have detailed data on all various shopping options besides

Wal-Mart that a particular consumer might have. Instead I specify the reduced form

relationship between o(m ) and population density.
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The second term allows demand for the outside good to depend upon a vector of the

average characteristics z (average demographic characteristics and income) of consumers at

location times a parameter vector ω. The final two terms, ζk0 and εk0, are random taste

parameters for the outside good that are specific to consumer k. The distributions for these

draws are explained momentarily.

The utility from buying general merchandise at given Wal-Mart store j ∈ Bwal is

uk j = −τ (m ) y j − xjγ + ζ1 + (1− σ) εkj.

The first term is the utility decrease from travelling to Wal-Mart store j that is a distance y j

from the consumer’s home. The weight τ (m ) the consumer places on distance can depend

upon population density. This is another reduced form relationship; because of differences

in the availability of substitutes induced by differences in population density, consumers in

areas with high population density may respond differently with distance than consumers in

low density areas. The second terms allows utility to depend upon other characteristics xj

of Wal-Mart store j. In the empirical analysis, the store-specific characteristic that I will

focus on is store age. In this way, it will be possible in the demand model for a new store

to have less sales, everything else the same. This captures in a crude way that it takes a

while for a new store to ramp up sales. The final two terms are random utility components

specific to store j.

As discussed in Wooldrige (2002), McFadden(1984) showed that under certain assump-

tions about the distribution of (ζk0, ζk1, εk0,εk1, ...εkJ) that I impose here, the probability a

consumer at purchases general merchandise from some Wal-Mart is

pgen,W =

hP
j∈Bwal exp ((1− σ) δ j)

i 1
1−σ

[exp (δ 0)] +
hP

j∈Bwal exp ((1− σ) δ j)
i 1
1−σ

(2)

for

δ 0 ≡ o(m ) + z ω

δ j ≡ −τ (m ) y j − xjγ,
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and the probability of purchasing general merchandise at a particular Wal-Mart j ∈ Bwal,

conditional on purchasing from some Wal-Mart is

p
gen,j|W

=
exp((1− σ) δ j)P

k∈Bgen exp((1− σ) δ k)
. (3)

The probability a consumer at buys his or her general merchandise at Wal-Mart j is

pgen,j = p
gen,j|W × pgen,W .

Total revenue from general merchandise sales of store j is

Rgen
j =

X
{ |j∈Bgen}

λgen × pgen,j × n . (4)

This equals the spending λgen of a consumer times the probability a consumer at shops at

j times the population n at , aggregated over all locations in the vicinity of store j.

I model spending on groceries exactly the same way. I assume the parameters are the

same except for the spending λgroc per consumer. Total revenue from groceries Revgrocj

is calculated analogous to the above. Even thought the parameters are the same as with

general merchandise, the probability a consumer shops at a given supercenter j ∈ Bsuper will

in general be different from the probability he or she shops there for general merchandise be-

cause the set of alternative supercenters in the vicinity of the consumer is in general different

from the set of Wal-Marts in the vicinity (because all Wal-Marts are not supercenters)

2.2 Cost Structure and Openings of New Stores

This subsection describes the cost structure. It first specifies input requirements for mer-

chandise, labor and miscellaneous inputs. These determine operating profit. It next

specifies a form of the fixed cost. Finally, it specifies the form of the density economies,

which will be the main target of the estimation.

2.2.1 Operating Profit

Suppose the gross margin is μ, so that μR equals sales minus cost of goods sold.

6



I assume labor requirements are proportionate to sales. Let νLabor be the amount of

labor required for one unit of sales. Suppose the wage for retail labor at location is W so

that the wage bill is W L.

Suppose the amount of land needed for a store is also proportionate to sales, νLand, let

r be the land rent at location , so land costs are

Cland = νLandr R

Assume there are other costs that are proportionate to sales and are the same at all

locations. This would include, for example, the cost of shelving and other aspects of the

physical plant (these are assumed to be variable inputs).

Cother = νotherR

Operating profit equals gross margin less labor costs and miscellaneous costs,

π = μRev− Clabor − Cland − Cother

2.2.2 Fixed Costs

There is also a fixed cost to operating at a particular location. I allow the fixed cost to

depend upon population density f(m).

A Wal-Mart store has a distinctive format, a big box, single story facility with a huge

parking lot on a convenient interstate exit. This approach has obvious limitations in a

big city. If Wal-Mart were to locate in an highly urbanized area, things would have to be

done, like using multiple floors and a parking ramp, that would not be necessary in a less

urbanized area. By allowing the fixed cost to depend upon population density I mean to

capture this. It is also meant to capture other factors for why a Wal-Mart in an urban area

would be less desirable than in less populated area.

2.2.3 The Density Economies

I now specify the main target of this inquiry, density economies. There is a store-level profit

term that is increased with a higher density of stores. This component is intended to capture

a broad set of factors, including management. Certainly a significant component is logistics
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and distribution cost. By having stores close to distribution centers, Wal-Mart saves money

on shipping but also can respond more quickly to demand shocks. Also included here are

savings in marketing cost (advertising) by locating stores near each other.

I take into account two aspects of density, store density and distribution center density.

I begin with a measure of the density of stores at a particular location . I sum up all

the stores that are “near” this location. I use proportionate decay at the rate of α per

mile. (I fix α = .02 and then experiment with different values.) So store density for general

merchandise at location is

Densitygenl =
X

k∈Bwal

exp(−αy k)

where y k is the distance from store k to location . Supercenter density is defined in an

analogous way. Each individual Wal-Mart store enjoys a cost savings that depends upon

the store density at that location, we call this density economies and it takes the following

function form

DensityEconomygen = φgendgen, for

dgen ≡
∙
1− 1

Densitygen

¸
The variable dgen is an index of density. This formulation has the following proprieties. If

there is only a single store, then the index at the location is dgen = 0. If there are an infinity

of stores, the index equals dgen = 1. I define density economies for groceries in the same

way with a density index dgroc and a parameter φgroc governing the magnitude of density

benefits.

I take a different approach to modeling savings from distribution center density. Typi-

cally, a store will deal with one regional distribution center (RDC) for general merchandise,

and if is a supercenter, it will deal with a single food distribution center (FDC). Let yDC

and yFDC be the distance of location to the closest RDC and FDC Then suppose spillover

for general merchandise is simply

DensityEconomyRDC = φRDCdRDC .

for

dRDC = −yRDC .
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So reducing the distance by one mile to the closest RDC increases profit at a store by φRDC

dollars. Density economies for FDCs are defined in an analogous way.

2.2.4 Dynamics

Everything that has been discussed so far considers quantities for a particular time period.

I now explain the dynamic aspects of the model. I assume Wal-Mart operates in a deter-

ministic environment in discrete time and that Wal-Mart has perfect foresight. The general

problem Wal-Mart faces is to determine for each period:

1. How many new Wal-Marts and how many new supercenters to open?

2. Where to put the new Wal-Marts and supercenters?

3. How many new distribution centers to open?

4. Where to put the new distribution centers?

In what follows I just focus on part 2 of Wal-Mart’s problem. I condition the answers to

1, 2, and 4, on what Wal-Mart actually did, and solve Wal-Mart’s problem of getting 2 right.

Of course, if Wal-Mart’s actual behavior solves the true problem of choosing 1 through 4,

then it also solves the constrained problem of choosing 2, condition on 1, 3, and 4 being

what Wal-Mart actually did.

Getting at part 1 of Wal-Mart’s problem–how many new stores Wal-Mart opens in a

given year–is far afield from the main issues of this paper. In its first few years, Wal-

Mart added only one or two stores a year. The number of new store openings has grown

substantially over time and in recent years they sometimes number several stores in one

week. Presumably capital market considerations have played an important role here. This

is an interesting issue, but not one I will have anything to say about with this project. A

similar point can be made about part 3 of Wal-Mart problem concerning the number of

distribution centers.

Getting at 4–where to put distribution centers–is closely related to the main issue of

this paper. A useful avenue of future result would be to jointly study part 2 and part 4.

For this paper, I condition on the choice of part 4.
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Now for notation. Let Bwal
t be the set of Wal-Mart stores in period t. Assume that once

a store is opened, it never shuts down. This assumption simplifies the analysis considerably

and is not inconsistent withWal-Mart’s behavior (it rarely closes stores). Then we can write

Bwal
t = Bwal

t−1 + Awal
t , where Awal

t is the set of new stores opened in period t. Analogously,

Bsuper
t ⊆ Bwal

t is the set of supercenters at t. A supercenter is also an absorbing state,

Bsuper
t = Bsuper

t−1 + Asupert , for Asupert being new supercenter openings in period t. Note a

supercenter can open two ways. It can be a new Wal-Mart store that opens as a supercenter

as well. Or it can be a conversion of an existing Wal-Mart store. Finally, I take as fixed the

openings of distribution centers.

Let Nwal
t and N super

t be the number of new Wal-Marts and supercenters opened at t, i.e.

the cardinality of the sets Awal
t and Asupert . Choosing these values was defined as part 1 of

Wal-Mart’s problem. These are taken as given here.

I allow for exogenous productivity growth of Wal-Mart equal to a growth factor ρt in

period t. What I mean by this is that if Wal-Mart where to hold fixed the set of stores

and demographics also stayed the same, from period t− 1 to period t, then revenue and all

components of costs would grow at a factor ρ, i.e.

Rj,t = ρRj,t−1

Cj,t = ρCj,t−1.

This means the profit grows by a factor ρt, holding fixed the set of Wal-Mart’s stores and

holding fixed demographics. As will be discussed later, the growth of sales per store of

Wal-Mart has been remarkable. Part of this growth is due the gradual expansion of its

product line, from hardware and variety items to eye glasses and tires later. The part of

this growth that is due to expansion to supercenters I explicitly account for. But the other

part I do not model and take the process as occurring exogenously.

Let β be the discount factor. Let a = (Awal
1 , Asuper1 , Awal

2 , Asuper2 , ..., Awal
T , AsuperT ) be a

vector specifying the new stores opened in each period t. Require this vector to be feasible

so that the number of new openings in a given period is Nwal
t and N super

t . Wal-Mart’s

problem at time t is
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max
α

TX
t=1

(ρtβ)
t−1

⎡⎢⎣ P
j∈Bwal

t

£
πgenjt − fgenjt + φgendgenjt + φRDCdRDC

jt

¤
+
P

j∈Bsupert

£
πgrocjt − f grocjt + φgrocsgrocjt + φFDCdgrocjt

¤
⎤⎥⎦ . (5)

for operating profit for merchandise line k ∈ {gen, groc},

πkjt = μRk
jt − wjtLabor

k
jt − rjtLand

k
jt −Otherkjt.

3. The Data

This section begins by explaining the basic data sources. It then discusses some facts about

Wal-Mart’s expansion process.

3.1 Data

There are five main data elements used in the analysis. The first element is store-level data

on sales and other store characteristics that I have obtained from a commercial source. The

second element is opening dates for stores, supercenters, general distribution centers and

food distribution centers. The third element is demographic information from the Census.

The four element is data on wages and rents by location.

Data element one, store-level data variables such as sales, was obtained from TradeD-

imensions, a unit of ACNeilsen. This data provides estimates of store-level sales for all

Wal-Marts open as of the end of 2005. This data is the best available and is the primary

source of market share data used in the retail industry. Ellickson (2007) is a recent user of

this data for the supermarket industry.

Table 1 presents summary statistics of annual store-level sales and employment for the

3,176 Wal-Marts in existence in the contiguous part of the United States as the end of 2005.3

(Alaska and Hawaii are excluded in all of the analysis.) Almost two thirds of all Wal-Marts

(1,980 out of 3,176) are supercenters. The average Wal-Mart racks up annual sales of $70

million. The breakdown is $47 million per regular store and $85 million per supercenter.

The average employment is 255 full time equivalent employees.

3 The Wal-Mart Corporation has other types of stores that I exclude in the analysis. In particualr, I am
excluding Sam’s Club (a wholesale club) and Neighborhood Market stores, Wal-Marts recent entry into the
pure grocery store segment.
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The second date element is opening dates of Wal-Mart facilities. Exact opening dates

for Wal-Marts was obtained from a file posted on the web by Wal-Mart but subsequently

withdrawn. Opening dates for supercenters was compiled by using data provided by Emek

Basker for years before 1999 and for later years by store announcements posted onWal-Mart’s

web site. Opening dates for regional distribution centers and food distribution centers was

compiled from various sources such as Lexis-Nexis and the web. Table 2 tabulates opening

dates for the four types of facilities by decade.

The third data element, demographic information, comes from the three decennial cen-

suses, 1980, 1990, 2000. The data is at the level of the block group, a geographic unit finer

than the Census tract. Summary statistics are provided by Table 3. In 2000, there were

206,960 block groups with an average population of 1,350. The Census provides information

about the geographic coordinates of each block group which I use extensively in the analysis.

For each block group I determine all the block groups within a five mile radius and add up

the population of these neighboring areas. This population within a five mile radius is the

population density measure m I use in the analysis. With this measure, the average block

group in 2000 had a population density of 219,000 people per five mile radius. The table

also reports mean levels of per capita income, share old (65 or older), share young (21 or

younger), and share black. The per capita income figure is in 2000 dollars for all the Census

years using the CPI as the deflator.4

The fourth data element is information about local wages and rents. The wage measure

is average retail wage by county from County Business Patterns. This is payroll divided

by employment. I use annual data over the period 1977 to 2004. Measuring land rents

is difficult. I proxy land rents using information about residential property values from

the decennial census. For each Census year, I take each store location, I create an index

of property value by adding up the total value of residential property within two miles of

each store location. I have supplemented this information with data on property values of

Wal-Mart properties for Iowa and Minnesota obtained from the web. As discussed in the

(future) appendix, there is a high correlation of this index with land values of Wal-Mart

stores in these states.
4 Per capita income is truncated from below at $5,000 in year 2000 dollars.
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The fifth data element is information from Wal-Mart’s annual reports including informa-

tion about aggregate sales for earlier years. (The TradeDimensions provides only current

data.) I also use information provided in the “Management Discussion” section of the re-

port. In the 2004 Wal-Mart Annual Report, the following information was reported: “As

we continue to add new stores in the United States, we do so with an understanding that

additional stores may take sales away from existing units. We estimate that comparative

store sales in fiscal year 2004, 2003, 2002 were negatively impacted by the opening of new

stores by approximately 1%.” This same paragraph was repeated in the 2006 annual report

in regards to fiscal year 2005 and 2006. I use this information when estimating the demand

model.

4. Estimates of Operating Profits

Section estimates various components of Wal-Mart’s operating profits. The main work of

the section, which is presented in Part 1, is to estimate the model of Wal-Mart’s demand.

Part 2 treats various other cost parameters. Part 3 discusses extrapolating to other years.

4.1 Demand Estimation

With a given vector θ of parameters from the demand model, we can plug in the demographic

data and obtain predicted values of general merchandise sales R̂gen
j (θ) for each store j from

equation (4) and predicted values of grocery sales R̂groc
j (θ).

The data has all commodity sales volume for each store. Call this Rj. I define general

merchandise to include all items sold at a regular Wal-Mart. (So cases of Coke and Pepsi sold

at regular Wal-Marts are considered general merchandise.) For regular stores, Rj = Rgen
j

by definition. For supercenters, I observe the sum of general merchandise and groceries,

Rj = Rgen
j +Rgroc

j .

Let ηj be the difference between log actual sales and log predicted sales for store j. For

regular stores this is

ηwalj = ln(Rj)− ln(R̂evgenj (θ)).
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For supercenters, this is

ηsuperj = ln(Rj)− ln(R̂gen
j (θ) + R̂groc

j (θ)).

Assume the discrepancies ηwalj and ηsuperj are i.i.d. normally distributed measurement error.

To estimate the model, we need functional forms for o(m) and τ (m). Assume

o(m) = ω0 + ω1 ln(m) + ω2 (ln(m))
2

τ(m) = τ 0 + τ 1 ln(m)

for

m = max{1,m},
for population density in thousands within a five mile radius. (Thus the minimum value of

ln(m) is zero.)

Two sets of parameter estimates are reported in Table 4. The first set, labeled MLE,

is obtained from standard maximum likelihood. The second set imposes a constraint on

the demand parameters that the statement about cannibalization in the annual report be

exactly true. Recall that beginning with fiscal year 2002, Wal-Mart began reporting that

the cannibalization rate–sales that existing stores would have received but did not because

of entry of new stores–was approximately 1 percent. With the parameter estimates of the

model and with the information about entry of new stores in each year, it is possible to

calculate the cannibalization rate in the model and we do this in Table 5. The estimates

are approximately 1, just as reported. If we round to one digit, it matches perfectly, except

for 2005 where it is just over 1.5 so we round up to 2.

The main goal of this paper will be to obtain a lower bound on the importance of

density economies. For this purpose, it is essential that I do not overstate the importance

of cannibalization. For this reason, I estimate a constrained version of the model were I

require the cannibalization rate for 2006 to exactly be one. The estimates are very similar.

the cannibalization rates are recalculated for each of the earlier years. The rates for the

constrained model are roughly two thirds of the unconstrained model. The constrained

model will be the benchmark model for the paper.

A few remarks about the parameter estimates. The estimates of λgen and λgroc are both

about 1.7 in thousands of dollars per year. This is the spending budget per consumer that
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is allocated between the outside good and Wal-Mart. To get a sense of these numbers it is

useful to report related Census figures. For 2005, per capita spending in the U.S. in general

merchandise stores (NAICS 452) was 1.77 thousands of dollars and in food and beverage

stores (NAICS 445) 1.75 thousands of dollars. It is remarkable that these numbers line up

like this but I should say I wouldn’t expect these numbers to be exactly the same as λgen and

λgroc. On one hand, the general merchandise category includes Saks Fifth Avenue which

is not likely to be in the same spending budget with a Wal-Mart. One the other hand,

the general merchandise category does not include the electronics giant Best Buy; a large

portion of this merchandise would be in the same spending budget with Wal-Mart. Both of

these categories are relatively small (electronics is less than a fifth of general merchandise

sales) so perhaps it is not a surprise that my estimate of λgen is so close to U.S. per capita

spending in this store category.

The remaining parameters in Table 4 are difficult to interpret directly so I will look at

how fitted values vary with the underlying determinants of demand. Table 6 examines

how demand varies with distance to the closest Wal-Mart and population density. The

table reports the probability that a consumer shops at the Wal-Mart for his or her general

merchandise. For the analysis, the demographic variables are set to their mean level from

Table 3. There is assumed to be only one store within the vicinity of the consumer (i.e.

within 25 miles) and the distance of this single Wal-Mart is varied in the table. Consider

the first row, where distance is set to zero (the consumer is right-next door to a Wal-Mart)

and population density is varied. As expected, there is a substantial negative effect of

population density on demand. A rural consumer right next to a Wal-Mart shops there

with a probability that is essentially one. With a population density of 50 this falls to .72

and at 250 it falls to only .22. In a large market there are many substitutes. Even a

customer right next to a Wal-Mart is not likely to shop there. While per capita demand

falls, overall demand overwhelmingly increases. A market that is 250 times as large as

an isolated market may have a per capita demand that is less than a quarter as large, but

overall demand is almost 50 times as large.

Next consider the effect of distance holding fixed population density. In a very rural

area, increasing distance from 0 to 5 miles has only a small effect on demand. This is
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exactly what we would expect. Raising the distance further from 5 to 10 miles does have

an appreciable effect, .988 to .711. In thinking about the reasonableness of this effect, it

is worth noting the miles here are “as the crow flies,” not driving distance. An increase of

5 to 10 could be the equivalent of a 10 to 20 mile increase in driving time. In that light,

the change in demand from .988 to .711 seems highly plausible. Going to 15 miles out, the

probability drops substantially to .068 and at 20 miles is essentially zero.

Next consider the effect of distance in larger markets. The negative effect of distance

begins much earlier in larger markets. For a market of size 250, an increase in distance from

0 to 5 miles reduces demand by on the order of 80 percent while the effect of distance in

rural markets is miniscule. This is what we would expect.

Demand varies by demographic characteristics in interesting ways. Wal-Mart is an

inferior good in that demand decreases in income. Note the coefficient on the per capita

income on the outside good is positive; this is makes Wal-Mart an inferior good. Demand

is higher among whites and lower among younger people and older people.

Finally, the only store characteristic used in the model (besides location) is store ages.

There is a dummy variable for stores at least two years old. Older stores have higher

demand.

4.2 Labor Costs

I assume constant returns to scale. I assume the labor requirements for general merchandise

sales are the same as for groceries. In my 2005 TradeDimensions data, on average there are

3.61 store employees per million dollars of annual sales. So I set νLabor = 3.61.

I use property value information for selected Wal-Marts in Minnesota and Iowa along

with the rent index described above to estimate land rends for each Wal-Mart location.

4.3 Other Costs

I need an estimate of variable profit per unit sales excluding variable labor costs. We begin

with the gross margin, the percent of the price that is markup over the cost of goods sold.

Wal-Mart’s gross margin over the years has ranged from .22 to .26 (from Wal-Marts annual

reports.), so if I set the gross margin to .24 that is a sensible place to start. I take out
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another .07 for nonlabor variable costs (more detail to come). This gives me variable profit

(excluding variable labor costs) per dollar of sale equal to

μ = .17.

4.4 Extrapolation to Other Years

So far I have constructed a model of Wal-Marts demand and cost’s circa 2005, the year of

the TradeDimensions data. I will need a demand and cost model for all the years that

Wal-Mart was in business to study its diffusion path.

Growth in Wal-Mart on a per store basis is remarkable. We see from Table 1 that in

2005, average store sales (regular stores )was $47.5 million. In 1972, average sales (in 2005

dollars) was only $11.1. How can I take this into account?

I applied the following procedure. First, I took the demand model from 2005 and

evaluated average sales per store in the prior years, for the actual the configuration of stores

for each of these prior years. The 2005 demand model evaluated at the store configuration

for 1972 predicted an average store sales (in 2003 dollars) of $31.4 million. So one third

of the difference in average in average store size of 11.1 in 1972 and 47.5 in 2005 is due

to the change in the average market size from the two periods. The rest of the difference

is unexplained. I attribute this to productivity growth. I determine the average growth

r1972 from 1972 to 2005 that would generate the sales difference of 11.1 to $***. The

annual growth in this case is approximately .04. Proceeding this way, I determined that the

following simple series fit well. Growth before 1980 at r = .04, growth after 2000 at r = .02

and linearly interpolating for the 20 years in between.

This growth factor was applied to all the cost functions as well. The impact of this

assumption is that if Wal-Mart keeps the same set of stores over a given time period, and

demographics were held fixed, then revenue and costs increase by a proportionate amount,

so profit increases by a proportionate amount.

The growth factor applies holding demographics fixed. But demographics changed over

time and I take this into account as well. I use data from the 1980, 1990, and 2000, decennial

censuses. For years before 1980, I use 1980, for years after 2000 I use 2000. For years in

between I use a convex combination of the appropriate censuses as follows. For example, for
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1984 I convexify by placing .6 weight on 1980 and .4 weight on 1990. I so this by assuming

that only 60 percent of the people in the people from the given 1980 block group are still

there and that 40 percent of the people form the 1990 block group are already there as of

1984. This procedure is clean, since I avoid the issue of having to link the block groups

longitudinally over time, which would be very difficult to do. Given my continuous approach

to the geography, there is no need to link block groups over time.

5. Evidence on Diminishing Returns from Cannibalization of Ex-
isting Sales

In this section I evaluate whether Wal-Mart encountered diminishing returns as it concen-

trated stores in the same general area.

I proceed at the state level aggregating some of the smaller states. (For the purposes

of this analysis, the New England states are treated as a single state. Maryland, Delaware

and the District of Columbia are also aggregated.) For each state, I determine the opening

date of the first Wal-Mart in the state as well as the opening state of the first supercenter.

I then categorize Wal-Marts by the within-state age categories listed in Table 7. The first

category, 1-2, are Wal-Marts opened in year one and two that Wal-Mart is in the state. The

second category, 3-5, are Wal-Marts opened in year three to five, and so on. I categorize

supercenters in the analogous way.

I define the incremental sales of a Wal-Mart j at its opening date as follows. I determine

the set of stores open as of the exact opening date (to the day) of store j including store j.

I calculate total Wal-Mart sales across all stores in this set. I use the 2005 demand model

with no productivity adjustment. So this is what annual sales would be if we had store

set as of the opening date of j but had the productivity term of 2005. Next I determine

what sales are without store j and take the differences. This is 2005-demand-equivalent

incremental sales. Using the estimates of labor requirements and such, I convert this to

incremental operating profit (again a 2005 equivalent). I then calculate mean incremental

sales and operating profit by within-state age category.

Table 7 shows while there are no diminishing returns within the first five years, they

set in after five years and become substantial beyond ten. In the 11-15 year category,
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incremental sales average almost 3 million less (almost 10 percent ) than in the first five

years in the state. This translates into a half million less in operating profit, per store. For

stores in the 21 and over category, the differences are very large, 8 million in sales and over

1 million in operating profit. Part B looks at supercenters and displays similar magnitudes

of diminishing returns.

Some indication about the importance of cannibalization can be obtained from the stand-

alone operating profit of each store. This would be a store’s operating profit if it were the only

Wal-Mart store. Incremental operating profit is bounded above by the stand-alone profit.

The stand-alone operating profit for the 21 and above category is almost the same as for the

1-2 age category. So the one million dollar difference in operating profit is cannibalization.

One issue is that there may be other cost differences across store locations that are not

being accounted for in the simple crosstabulation in Table 7. In particular, as argued earlier,

I expect fixed costs to be higher in higher population areas. Table 8 runs a regression to

control for population density. I use a quadratic in logs. I also include state fixed effects.

The idea is to hold fixed state and population and determine how incremental profit varies in

a within-state age category. In the regression, within-state age 1-2 is the excluded category.

Adding these controls makes little difference. For example, the difference between the 11-15

group and the 1-2 group is .63 in the regression and 3.55 - 2.95 = .60 in the raw data. For

16-20, the analogous differences are .76 and .69. The differences in the regression are highly

statistically significant.

Obviously, initial store density is higher for stores that open later within a state. Table 8

reports means of the incremental density index at the year of opening. For the calculations,

I assume α = .02 (more on this later). I use (??) to calculate the density index for each

store before and after a particular store j opens. Even for stores that are new in a state,

the mean incremental spillover is .8, well above zero. This happens because the new stores

in a state are getting density benefits from stores in adjacent states.

Define the incremental distribution center distance for store j to be the distance of store

j from the closest distribution center at the date of store j’s opening. On average, the first

store in a state is quite far from a distribution center, 343 miles. As we move up the age

category, there is a substantial decrease. Stores that open in a state where Wal-Mart has

19



been there for 20 years or more are, at opening, within 90.1 miles of a distribution center.

The same pattern occurs with supercenters.

6. Bounding Density Economies

In this section I use the information in Wal-Mart choice behavior to obtain bounds on Wal-

Mart’s cost parameters.

6.1 Method

The α parameter governs the shape of the spillover function while the φ parameter determines

the weight placed on spillover. There is something of a tradeoff between the α parameter

and the φ parameter in making density matter in Wal-Mart’s behavior. My approach is to

fix α and then estimate φ. Then I discuss how my choice of α matters in answering questions

about the overall importance of density economies to Wal-Mart. For the discussion here,

α = .02 is assumed throughout.

I parameterize the fixed cost function to depend upon population density. This is

motivated by my earlier discussion. Suppose

f(m) = ω0 + ω1 ln(m) + ω2 ln(m)
2.

I assume, a priori, that ω1 ≥ 0 and ω2 ≤ 0 so the relationship between fixed cost and density
is weakly increasing and weakly concave. The parameter ω0 makes no difference in the

analysis so henceforth I normalize it to ω0 = 0.

The premise of this analysis is that sales are measured exactly with the estimate model

but that there is measurement error in the wage as well as rent. Let εwagej,t and εrentj,t be the

measurement error for these two variables. Then actual operating profit of store j in time

t given openings at that time is

πgenj,t = (μ− νother)R
gen
j,t − wjtν laborR

gen
j,t − rjtνlandR

gen
jt .

The observed operating profit is

π̃genj,t = (μ− νother)R
gen
j,t −

¡
wjt + εwagejt

¢
νlaborR

gen
j,t −

¡
rjt + εrentjt

¢
ν landR

gen
jt
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and the difference is

−εwagejt νlaborR
gen
j,t − εrentjt νlandR

gen
j,t . (6)

Assume the measurement error is i.i.d. across store locations and has expected value zero.

As above, let a denote a particular choice of Wal-Mart, a particular feasible solution

to problem (5). Let a0 denote the choice Wal-Mart actually made. For each policy a,

using the estimates above let Πgen(a) be estimated present value of operating profits at date

t = 1 under this policy. Let dgen(a) be the present discounted value at the initial date

t = 1 of the density index aggregated across all store in each period. Finally, let F k
1 (a) be

the present value of linear component of fixed cost and F k
2 (a) be the present value of the

quadratic component of fixed cost under a, k ∈ {gen, groc}. Analogously, define dgroc(a),

dRDC(a) and dFDC(a). Let v(a, θ) be the total discounted present value given action a and

parameter vector θ =
©
φgen, φgroc, φRDC , φFDC , ω1, ω2, ζ

ª

v(a, θ)

= Πgen(a) + φgendgen(a) + φRDCdRDC(a)− ω1F1(a)− ω2F2(a)

+Πgroc(a) + φgrocdgroc(a) + φFDCdFDC(a)− ζω (ω1F1(a)− ω2F2(a))

Now the chosen policy a0 solves problem (5). Hence at the true parameter θ,

v(a0, θ) ≥ v(a, θ), for all a 6= a0

Or

∆v(a, θ) ≥ 0,

for

∆v(a, θ) = v(a0, θ)− v(a, θ).

Given an alternative policy a and a parameter vector θ, we observe

∆ṽ(a, θ) = ∆v(a, θ) + εa,

Where a is the present value of the difference in measurement error (6) between the actual

policy and the alternative a. Now E[εa] = 0.
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Like Bajari and Fox (2005) and Fox (2005), I consider pairwise resequencing. I consider

only deviations a in which I reorder a pair of stores. For example, store #1 actually opened

1962 and #2 opened 1964. I consider the deviation where store #2 opens in 1962, store #1

in 1964, everything else the same. Let Apair be the set of pairwise deviations. Consider

two different alternatives a and a0. If there is no overlap in the two stores resequenced for

a and a0, then E[εaεa0] = 0. As there are a large number of stores, the likelihood of overlap

is small.

I follow recent work on partially identified sets (Manksi (2002)) and construct moment

inequalities (Pakes, Porter, Ho, Ishii (PPHI)) in which the measurement error is averaged

out. Let i index subsets of Apair that will be defined in way that is independent of the

measurement error. Suppose there are K instruments indexed by k where the instrument

zk(a) is nonnegative and uncorrelated with the measurement error. For each i and k define

mik(θ) = E [∆ṽ(a, θ)zk(a)] for a ∈ Apair
i .

At the true θ,

mik(θ) ≥ 0, for all i and k. (7)

Three classes of subsets are constructed.

1. Start with the set of stores opened 10 or more years after the first store in their state.

For each such store j, find the set of stores, indexed by j0, such that store j0 opens

three or more years after store j in a different state. Furthermore, require that store j0

be opened within four years of the first store in j0’s state. This is set Apair
1 . Below I

will call these farther sooner deviations.

2. Start with the list of stores opened within five years of the first store in the state. For

each such store j, find the set of stores, indexed by j0, such that store j0 opens three

or more years after store j in a different state. Furthermore, require that store j0 be

opened 10 or more years after the first store in j0’s state. Finally, require that the first

store in j0’s state is before the first store in j’s state. Flipping the opening order, this

is set Apair
2
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3. Define two population density groupings for store locations. For example, let group

1 be locations with less than 15,000 in population within five miles and let group 2

be locations with 15,000 to 40,000. Take store locations in the same state opening

at different dates where one location is in density group 1 and the other is in density

group 2. Flip the order of store openings. Do this for various different pairs of density

groupings.

The purpose of set 1 is to provide information about a lower bound on the density

economy parameters φgen and φgroc. In the deviation, instead of adding yet another store in

a state where Wal-Mart has been for over 10 years, I open early a store that would have been

one of the early stores in a another state. The alternative location is one which has not yet

been hit with diminishing returns. Set 2 is the opposite. The third category defines pairwise

perturbations based on population density that are intended to provide information about

the parameters ω1 and ω2 that govern how the fixed cost varies with population density.

Given the subsets Apair
i , I take further subsets based on year founded and based on

whether the deviation involves a new Wal-Mart store opening or a conversion of a Wal-Mart

store into a supercenter.

The following variables are used for the instruments zk. (i) A vector of ones. (ii) ∆F1,

∆F2, −∆F1 and −∆F2 plus constants so all are nonnegative. (iii) ∆dgen,−∆dgen, ∆dgroc,

and −∆dgroc plus constants so all are nonnegative. The instruments must be nonnegative

to preserve the inequalities.

Let Θ̂ be the set of θ that satisfies the above for all i and k in the sample. I use standard

linear programming techniques to characterize the set Θ̂. To simplify, I assume

φgroc = ζφφ
gen

φFDC = ζφφ
RDC .

Fix a particular φRDC . I determine bounds on φgen. For a given ζφ and ζω, this is a

standard linear program. I do a grid search over φRDC , ζφ and ζω and for each use linear

programming to solve the problem of minimizing φgen subject to the constraints.
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6.2 Estimates

Consider the set of farther-sooner deviations defined above by Apair
1 . In each of these,

Wal-Mart is delaying the opening of a store in it existing network and opening sooner a

store farther out from its network. Given the parameters defining the deviation (e.g. with

start with the set of stores opened 10 years after the first store in the state, etc.), there

are 239,698 such deviations Wal-Mart could have considered involving reordering of store

opening dates and 5,110 involving reordering of supercenter conversion dates. (There are

less for conversions because supercenters have not been around as long.) Calculating the

sales model is time consuming so I take a random sample to estimate the means. Table 9

show the sample means for the two types of deviations. For example, the mean difference

in the present value of profit from doing the actual policy relative to the deviation is -1.28

million for the Wal-Mart store openings (the row labeled “General”). The table listed the

mean value for all the variable that enter into ∆v(a, θ).

By doing the actual policy, Wal-Mart lost, on average per deviation (i.e. per store), 1.28

million dollars relative to what it could have achieved in operating profit from the deviations.

But by doing the actual policy instead of the it gained in the density measures. It gained .82

in the dgen index of density for general merchandise and it gained 5.90 in the dRDC density

measure, where the units here are in hundreds of present value year-miles. The table also

shows the difference in the present value of the log population density terms used in the

fixed cost.

I begin the discussion of the estimated bounds with a simple case. Suppose we zero

the dependence of the fixed cost on density, ω1 = ω2 = 0. And assume that φgen = φgroc

and φRDC = φFDC . Consider the subset of the farther-sooner deviations where we change

Wal-Mart store openings. Taking the means from Table 9 and following (7), it must be that

meana∈Apair
1
(∆v) = −1.28 + .82φgen + 5.9φRDC ≥ 0

Now if φRDC = 0 where to hold, this moment inequality implies that

φgen ≥ 1.28
.82

= 1.56.

If we increase φRDC , the bound on φgen decreases. The first row in Table 10 reports the bound
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on φgen from this moment given φRDC . The bound on φgen goes to zero at approximately

φRDC = .22.

I will discuss the interpretation of the units of φgen. But the interpretation of φRDC = .22

is immediate. At this level, the cost savings is $220,000 from having the regional distribution

center closer to a given store by 100 miles and everything else the same. Ballpark figures

for what trucking services charge to deliver trailers is on the order of $2 a mile or $800 for a

200 mile round trip. So the $220,000 figure is on the order of $200,000/800=275 trips a year

between the distribution center and the store. Just to put this figure in perspective, suppose

φgen = φgroc = .22 every store was moved 100 miles from the closest regional distribution

center and food distribution center. Then we multiply by 5,000 (3000 stores, 2000 of the

also selling groceries) to get 1.2 billion, which is 10 percent of Wal-Mart’s 2006 net income.

If we do the same exercise with conversion deviations, the lower bound is not as tight, it

is on the order of one third as high.

The discussion so far is meant to be illustrative. It assumes that fixed costs do not

depend upon population density, ω1 = ω2 = 0, but this is inconsistent with prior knowledge

about Wal-Mart choice behavior. Furthermore, it does not use the information contained

in additional moments.

The second set of estimates in Table 10 use the basic moments. For these the only

instrument is the vector of ones; I do not include the interactions. For these estimates I

fix φRDC and take a grid over ζφ ∈ [0, 1] and ζω ∈ [0, 1] and then minimize φgen subject to
the constraints. It turned out that the minima were obtained at ζφ = 1 and ζω = 1 so the

density parameters and the fixed cost parameters to produce the minimum are the same for

general merchandise and groceries.

In freeing up the parameters on the fixed cost, the estimated lower bound on φgen de-

creases. Why this happens can be seen in Table 9. Note that for the general perturbations,

the mean of ∆F gen
1 = −.74. This is saying that on average the stores opened earlier in the

actual path are rural areas compared to the deviation. From the other perturbations we

determine that but some weight on this in fixed cost savings. But then we can push down

the weight on the density benefits. Like the first estimates, we see a tradeoff here between

φgen and φRDC . Of we put no weight on being close to distribution centers we have to put
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some weight on being close to stores. If we want to put no weight on being close to store,

we have to put some weight on being close to the distribution centers.

Note that we also condition on the opening year, separating out the period 1988-2006

when Wal-Mart starting having supercenters from the earlier period. The bound is signifi-

cantly tighter in the later period.

The last set of estimates use the full set of interactions. As can be seen from just

using the farther-sooner moment, one can’t distinguish between store density benefits and

distribution center density benefits. But through use of the information in the interactions

(e.g. multiplying through by ∆dgen plus a constant, ∆dRDC plus a constant, etc.) we can say

more. Adding these additional moments has two qualitative impacts. First, the estimated

bounds increase. They cannot go down, of course, since more constraints are being added.

Second and more interestingly, there is no longer a tradeoff between φgen and φRDC . I

conclude from this that distance to the regional distribution center and the food distribution

center is not the only thing that matters for density economies. There are advantages besides

these two factors from having stores close. On explanation of these other benefits is that

Wal-Mart’s get deliveries from other sources besides these two distribution channels. First,

Wal-Mart has other kinds of distribution (e.g. clothes come to the store a different way a

different way). Plus there are direct store deliveries from manufacturers that Wal-Mart has

negotiated with Proctor and Gamble. Wal-Mart reports that a typical supercenter receives

85 different delivery trucks a week. In addition to these logistic benefits of a dense store

network, there are other benefits mentioned in the introduction.

The preferred bound uses the full set of instruments. The bound for the supercenter

era is tightest, so I focus on this one, φgen ≥ .85. To interpret this number, consider figure

11. This lists the average store density index dgen for selected states for Wal-Mart as of

2006. The lowest is in North Dakota at .50. The highest is New Jersey, at .978. California

is at .945. With φgen ≥ .85, the difference in density economies between New Jersey and

California has a lower bound of .85*(.978-.945)=.0281 or $28,100 per store per year (double

that if a supercenter). The difference between New Jersey and Washington State is $85,000

per store, or $570 per store employee.
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Table 1 
Summary Statistics: TradeDimensions Data  

2005 (excluding Alaska and Hawii) 
 

Store Type Variable N Mean Std. Dev Min Max 
All Sales 

($millions/year) 3,176 70.5 30.0 9.1 166.4 
Regular Store Sales 

($millions/year) 1,196 47.0 20.0 9.1 133.9 
SuperCenter Sales 

($millions/year) 1,980 84.7 25.9 20.8 166.4 
       
All Employment 3,176 254.9 127.3 31.0 812.0 
Regular Store Employment 1,196 123.5 40.1 57.0 410.0 
SuperCenter Employment 1,980 333.8 91.5 31.0 812.0 

 
Table 2 

Distribution of Wal-Mart Facility Opens by Decade and Opening Type 
 

 
Wal-Marts Supercenters Regional 

Distribution Centers 
Food Distribution 

Centers 

Decade 
Open 

Opened 
this 

decade Cumlative 

Opened 
this 

decade 

Cumlative Opened 
this 

decade 

Cumlative Opened 
this 

decade 

Cumlative

 1962-1969 15 15 0 0 1 1 0 0
 1970-1979 243 258 0 0 1 2 0 0
 1980-1989 1,082 1,340 4 4 8 10 0 0
 1990-1999 1,130 2,470 679 683 18 28 9 9
 2000-2005 706 3,176 1,297 1,980 14 42 25 34

 
Table 3 

Summary Statistics for Census Block Groups 
 

 1980 1990 2000 
N 269,738 222,764 206,960 
Mean population (1,000) 0.83 1.11 1.35 
Mean Density  
(1,000 in 5 mile radius) 165.3 198.44 219.48 
Mean Per Capita Income 
(Thousands of 2000 dollars) 14.73 18.56 21.27 
Share old (65 and up) 0.12 0.14 0.13 
Share yound (21 and below) 0.35 0.31 0.31 
Share Black 0.1 0.13 0.13 

 



Table 4 
Parameter Estimates for Demand Model 

Parameter Definition MLE Model
Constrained 
MLE Model 

λgen 
General Merchandise Spending per 
person (annual in $1,000) 1.731 1.736 

  (.008) (.070) 

λgroc 
Grocery spending per person (annual 
in $1,000) 1.697 1.698 

  (.004) (.076) 
ρ correlation parameter .962 1.065 
  (.026) (.023) 

τ0 constant .626 .702 
  (.034) (.036) 

τ1 population density within 5 miles -.046 -.053 
  (.007) (.007) 
ω Outside good valuation parameters   
  constant -7.896 -8.675 
  (.374) (.610) 
  ln(mbar) 1.859 2.095 
  (.102) (.168) 
  ln(mbar)2 -.062 -.078 
  (.008) (.015) 
  Per Capita Income .015 .014 
  (.003) (.003) 
  Share of block group black .341 .320 
  (.077) (.082) 
  Share of block group young 1.090 1.147 
  (.420) (.479) 
  Share of block group old .580 .475 
  (.335) (.389) 
γ Store-specific parameters   
  store age 2+ dummy .177 .205 
  (.023) (.024) 
    

σ2 measurement error .065 .065 
  (.002) (.002) 
Ν  3176 3176 

SSE  205.030 206.065 

R2  .755 0.754 
ln (L)   -155.081 -163.074 



Table 5 
Cannibalization Rates 

From Model and As Reported in Annual Reports 
 

Fiscal Year From Annual 
Reports 

MLE Model Constrained 
MLE Model 

1999 n.a. 0.69 0.44 
2000 n.a. 0.95 0.65 
2001 n.a. 0.61 0.37 
2002 1 0.73 0.49 
2003 1 1.41 0.93 
2004 1 1.48 1.06 
2005 1 1.55 1.10 
2006 1 1.35 1.00*  

*Cannibalization Rate is imposed to equal 1.00. 
 
 

Table 6 
Comparative Statics with Demand Model 

 

Distance 
Population Density 

(thousands of people within a 5 mile radius) 
(miles) 1 5 10 20 50 100 250 

0 1.000 .991 .971 .912 .715 .482 .220 
1 .999 .984 .949 .858 .605 .371 .158 
2 .999 .971 .913 .779 .483 .272 .111 
3 .997 .948 .854 .671 .363 .191 .076 
4 .994 .907 .767 .543 .258 .130 .052 
5 .988 .841 .648 .408 .175 .086 .035 

10 .711 .195 .092 .044 .018 .009 .005 
15 .068 .011 .006 .003 .002 .001 .001 
20 .002 .001 .000 .000 .000 .000 .000 
25 .000 .000 .000 .000 .000 .000 .000 

 
 



Table 7 
(All evaluated at 2005 Demand Equivalents) 

 
Part A: General Merchandise (New Wal-Marts including supercenters) 

 

Within-
State 
Age N 

Incremental 
Sales 

Incremental 
Operating 

Profit  

Stand-
alone 

Operating 
Profit 

Incremental 
Store 

Density 
Index 

Incremental 
Distribution 

Center 
Distance 

1-2 288 38.35 3.55 3.62 0.82 343.26 
3-5 614 39.98 3.55 3.70 0.96 202.04 
6-10 939 38.04 3.39 3.64 0.98 160.68 
11-15 642 36.75 2.95 3.36 0.99 142.10 
16-20 383 33.48 2.86 3.47 1.00 113.66 
21 and 
above 310 29.95 2.44 3.56 1.00 90.19 

 
 

Part B: Groceries (New supercenters) 
 

Within-
State 
Age N 

Incremental 
Sales 

Incremental 
Operating 

Profit  

Stand-
alone 

Operating 
Profit 

Incremental 
Supercenter 

Density 
Index 

Incremental 
Distribution 

Center 
Distance 

1-2 202 42.30 3.86 3.93 0.73 252.90 
3-5 484 42.71 3.97 4.13 0.93 171.17 
6-10 775 41.00 3.63 3.97 0.99 113.52 
11-15 452 36.70 3.19 3.84 1.00 95.32 
16-20 67 29.69 2.71 3.42 1.00 93.95 

 
 



Table 8 
Incremental Operating Profit Regression 

2005 Demand Equivalents 
Includes State Fixed Effect 

 

 
General 
Merchandise Groceries 

 
Within-State Age 
Category 
 
 3-5 
 

 
-0.04 
(.05) 

-0.11 
(.06)

 6-10 
 

-0.31 
(.05) 

-0.62 
(.07)

 11-15 
 

-0.63 
(.06) 

-1.13 
(.08)

 16-20 
 

-0.76 
(.06) 

-1.40 
(.12)

 21 plus 
 

-1.33 
(.07)  

log population 
density 

5.80 
(.19) 

6.23 
(.31)

(log population 
density)2 

-0.26 
(.01) 

-0.27 
(.01)

R2 .52 .50 

N 3176 1986 
 

 



Table 9 
Farther Sooner Deviations 
Weighted Mean Changes 

(All years)  
 

Facility 
Perturbations 

Number 
of 

Deviations 

Sample 
Size ΔΠgen 

($million) 
Δdgen 

 

ΔdRDC 

(100s of 

year miles) 
ΔF1

gen 

 
ΔF2

gen 

 
ΔΠgroc 

($million) 
Δdgroc 

 

ΔdFDC 

(100s of 

year miles) 
ΔF1

groc 

 
ΔF2

groc 

 
General 239,698 15,000 -1.28 0.82 5.90 -0.74 -4.63 0.00 0.00 0.00 0.00 0.00
Grocery 5,110 3,625 0.00 0.00 0.00 0.00 0.00 -0.13 0.23 1.17 -0.01 0.07

 



 
Table 10 

Estimates of Lower Bound on φgen 
 

Moments Merchandise 
Included 

Time 
Period 

φRDC 

 Number General Grocery  0.00 .01 .02 .05 .10 .15 .20 
Farther Sooner 
Deviations and  
ω1 = 0 and ω2 = 0 

1 yes no All Years 1.56 1.50 1.42 1.20 .84 .48 .12 

 1 no yes All Years .57 .51 .46 .31 .07 .00 .00 
            
Basic 16 yes yes All Years .59 .52 .46 .25 .00 .00 .00 
 16 yes yes 1962-1988 .11 .04 .00 .00 .00 .00 .00 
 8 yes yes 1988-2006 .79 .73 .66 .46 .12 .00 .00 
            
            
Basic plus  
Interactions 

272 yes yes All Years .66 .66 .66 .67 .68 1.20 3.16 

 272 yes yes 1962-1988 .36 .36 .36 .36 .36 .36 .35 
 136 yes yes 1988-2006 .85 .85 .86 .86 .87 1.20 3.17 
            

 136 yes no 1988-2006 .71 .71 .71 .70 .70 .70 .70 
 136 no yes 1988-2006 .28 .29 .29 .29 .30 1.20 3.17 



Table 11 
Mean Store Density Index 

Selected States 
 

State 
Rank (lowest to 

highest) 
Mean Store Density 

Index 
ND 1 .50 
MT 2 .53 
WY 3 .66 
SD 4 .74 
ID 5 .78 

   
WA 10 .879 
CA 20 .945 
AL 30 .964 
DE 40 .973 
NJ 50 .978 

 
 




